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Abstract. Hamiltonian theories with fermions are proved to be equivalent IO hierarchies 
of ordinary Hamiltonian theories. The corresponding Poisson brackets are defined in terms 
of the original super-Poisson structure, while Hamiltonian functions are simply the 
coefficients in the expansion of the super-Hamiltonian function as  a formal power series 
in Grassmann generators. Fermion extensiom of the KdV equation are considered to 
illustrate the general result; its space-supersymmetric extensions are used to show in 
particular how supersymmetry transformations can be recast as ordinary Hamiltonian 
symmetries. 

1. Introduction 

The problem of defining a more or less formal classical limit for fermion systems has 

Feynman path integral quantization method, where the notion of classical phase, or 
configuration, space plays a crucial role [2]. As is well known, the path integral 
quantization procedure was extended long ago to fermion systems by Berezin in terms 
of a purely algebraic notion of the integral on fermion degrees of freedom [3]. This 
approach led to the introduction of the concept of a (pseudo-)classical superdynamical 
system [4], as a system with both traditional bosonic and anticommuting fennionic 
variables; this notion became widely popular among physicists in particular due to 
the emergence of superstring theory [ 5 ] .  

As to the generalization of classical dynamics mentioned above, several attitudes 
are possible. The simplest choice is to work in a purely algebraic setting in analogy 
to the Berezin approach to the Feynman path integral on  fermion variables. In this 
context the formulation of classical dynamics in terms of derivations on the ring of 
smooth functions on  a given phase manifold, or reiated settings, can be taken as the 
starting point [6]t. It is then quite natural to generalize this notion of the classical 
dynamical system, just taking more general non-Abelian rings as dynamical variable 
sets. In particular a Z ,  graded ring 9, i.e. such that 

a !ong history [!j. .&par! from i!S merc!y spcc.!z!ive meaning, it is rc!cvan! to the 

9*=(-l)sk")dK *9 (1) 
where 9, Q are pure elements, i.e. of definite grading g ( q ) ,  g($) = 0, 1 E Z , ,  is presumably 
the most general arena for superdynamics. However, this extremely general axiomatic 

t A related aspect consists of the algebraic characterization of tangent and cotangent bundles and correspond- 
ingly of their Lagrangian and Hamiltonian vector fields [7]. 
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context has several limitations, the most severe being the lack, without further 
specifications, of the notion of flow corresponding to a given supervector field (deriva- 
tion). Furthermore it deprives path integral quantization of its strongly advocated 
probabilistic interpretation, which is already present in the original Feynman concep- 
tion [8] and, strictly speaking, is rigorously established for its Euclidean version [9]. 

What can be considered in some sense the opposite constructive viewpoint, was 
recently applied to show how some graded extensions of the Kdv equation can be 
recast in terms of ordinary Hamiltonian field theories, which in particular admit 
bi-Hamiltonian structure if the corresponding superdynamics does [lo]. It was also 
shown that the ordinary Hamiltonian systems constructed starting from the space- 
supersymmetric versions of the Kdv equation admit, in correspondence with the original 
supersymmetry transformations, ordinary Hamiltonian symmetries. The aim of the 
present paper is to prove that this construction works in general for arbitrary super- 
Uami!!nnifn system, by giving !he genera! p:escrip!icx k r  cbtai-icg the =:&nary 
Hamiltonian structures from the super-Hamiltonian ones. The general results will then 
be applied to the 1 + 1 dimensional superfield theories already mentioned. 

The motivation is twofold: first, the proposed transcription of superdynamics, in 
terms of ordinary dynamics only containing commuting variables, removes the subtleties 
inherent in the very notions of time flow and super-Hamiltonian integrability; second, 
it leads to the possibility of defining the path integral on fermion variables in terms 
of ordinary measure-theoretic integration [ 111. This last point is particularly relevant 
since it recovers the probabilistic interpretation and then, for instance, avoids the need 
for ad hoc tricks to perform Monte Carlo simulations of fermion systems [12]. 

To fix language and notation, consider the traditional context in which super- 
dynamics is usually formulated. The implied ring 9 is generated by two families 
(UA~B.  ( ' P ~ ) ~ ~ ~  of pure elements 

d u m )  = 0, a E B ;  d q a )  = 1 P E F  (2) 

respectively corresponding to bosonic and fermionic degrees of freedom. The families 
B and F of bosonic and fermionic indices (which are in principle independent, except 
for supersymmetric theories), can be either finite or infinite; in particular they are 
formally considered non-denumerably infinite if field theories are involved. Time 
evolution is then defined by putting 

cm =X,(u, !P) a € B  (30)  

4% = Y,(u, c )  P E F  (36)  

where X,, Yo are in general formal series in their arguments and mostly just poly- 
nomii!s, whi!e here and hencefxth bo!d characters : and 9 denote !he wha!e ffzi!ies 
of Bose and Fermi variables. The above equations are usually considered as transcrip- 
tions in local coordinates of a dynamical equation for a vector field globally defined 
(or in principle globally definable) in some suitable supermanifold [13]. Here only the 
local aspects will be considered; the global analysis of the present proposal will be 
treated elsewhere [ 141. 

The present paper is concerned in particular with super-Hamiltonian dynamics; in 
such a case the R H S ~  of equations ( 3 a )  and (36)  are assumed to be local components 
of a super-Hamiltonian vector field corresponding to a specific super-Hamiltonian 
structure and super-Hamiltonian function H, which is a suitable even (i.e. g ( H ) = O )  
element of F. To be specific, a super-Hamiltonian structure on 9 is given in teI"S of 
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a super-Poisson bracket, i.e. a graded antisymmetric c-map 

(1; g) E 9 x  9- t1; g } E  9 (4) 

satisfying the graded Jacobi identity and being a derivation with respect to both 
arguments. To be a graded antisymmetric c-map means that 

( 5 )  

g(lf ;gI)=g(fg)=g(f)+g(g)  (mod21 ( 6 )  

( 7 a )  

t1; g ~ l = ( - l ) s ~ f ' g ~ g l ~ I 1 ;  h l+I f ,  glh ( 7 6 )  
where 1; g, h are pure elements of 9. The super-Hamiltonian character of equations 
(3a) and (36) then means in particular that their RHSS are given by 

X,(u, c a )  = tum. ,  HI ( 8 0 )  

YB(u. P ) = { ( P P ,  HI ( 8 6 )  

k , f  } = - ( - l ) n ( f l g W  d 

while the graded Jacobi identity and derivation property respectively read 

(- l)"""h'[l; {g, h ) ] +  (-1)8'h'g'g'[h, [1; g]} + (- l)g(g)g(fl k , [ h , f l l = O  

and in general that, for a generic element f of 9, 

f = M H l .  (SC) 

2. From super-Hamiltonian back to Hamiltonian systems 

In order to recast super-Hamiltonian dynamics in an ordinary Hamiltonian setting, 
consider explicitly the U and 'p as local coordinates on a supermanifold locally modelled 
on C?B'xC$F',  #(B) and # ( F )  respectively denoting the (possibly infinite) number 
of boson and fermion degrees of freedom [13]; here C, denotes the subalgebra of 
commuting supernumbers, g(CJ = 0, and Ca the subspace of anticommuting ones, 
g(CJ = 1. This means that the U and 'p can be represented as follows: 

i 
u',=um,B+x- ( 2 k ) !  u * . ( j t . j z  ..... j ~ ~ ~ L L . ~ ~ l j n  (9a) 

where u . , ~  is the body of U*, while the sum in ( s a )  is its soul u , , ~  and the summation 
is implied on repeated Grassmann indices. Here C l ,  &, . . . , &, . . . , with 5.6 + ljll = 0, 
are a family of generators of the Crassmann algebra A, whose dimensionality is 
irrelevant in what follows. If in particular A = A,, which is always implicitly assumed 
in field theory in order for the corresponding quantum theory to be able to accommodate 
the whole Fock space, expressions given in equations (9a) and (96) are to be meant 
as formal series, thus avoiding any notion of convergence in A, [13]. Finally, power 
series cneEciexts ix eqaatinxs (?a)  axd (96) a:e ~ : d i ~ a : y  ca:-p!e:: va:iab!es, comple:e:y 
antisymmetric in their Grassmann indices. Here for simplicity they are assumed to be 
real, which does not imply that U and (P are real supernumbers, since, although 
Grassmann generators are taken as usual to be rea!, i.e. 5: = &., their products l , 1 2 .  . . lk 
are real or imaginary according to the value of k [13]. 
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As to functions X, and Y, appearing in equations ( 3 0 )  and ( 3 6 ) ,  it is worth 
remembering that they are defined as power series in p and in the souls of U [13]; 
once expressions given in equations ( 9 0 )  and (96) are substituted for U and p in these 
series, X, and Yo are given as (formal) power series in Grassmann generators as follows: 

where power series coefficients are oridnary complex variables, fulfilling the same 
antisymmetry and reality (for consistency) requirements as for coefficients in equations 
( 9 0 )  and ( 9 b ) ,  and [c], [d] denote generic (respectively even and odd) Grassmann 
muiii-indices, i.e. ordered subsets of i j , ,  j , ,  . . . , j,,i in equation ( ioa)  and 
{ j , , j 2 , .  . . , j2*-,} in equation (106). Once expressions (9a), ( 9 b ) ,  (loa) and (106) are 
substituted for left- and right-hand sides in equations (30) and ( 3 6 ) ,  an equivalent 
ordinary differential system for real coefficients of the expansions (9a) and (96), from 
now on called component variables, is obtained: 

% . B = x m , B ( u B )  (110)  

$ m , l i )  = ym.lO('JJ, ( b < i ) )  (116) 

d. , ( i , j l=  x ~ , [ ; , j l ( ~ B >  U(!,,), Viil, PC,)) (1lc) 

(1 ld)  

( I l e )  

o1z.j.h) . .  = Y o , ( i , j . h l ( U B ~  U(L j1 ,  q i h ) ,  u [ j ,h ) ,  pl<l, c l j l ,  P ( h 1 .  (D ( i . j ,h ) )  

%(z,J.h,k)= . .  Xo, (S j .h .k j (UBi  ' [ L j ) ,  u ( i h ) ,  u[ i .k l .  u < j , h ) ,  U ( j ,k l r  u i h , k ) ,  uii, j ,h,ki. 

p(i), (D(j1, ( D f h ) ,  a f k ) ,  (D( i , j ,h l ,  (Di;,.r.k,, ( a ( , h , k ) ,  (D ( j ,h .k ) )  

If equations ( 3 0 )  and (3b)  are assumed to define a super-Hamiltonian system according 
to equations (8a)  and (Sb) ,  then coefficients in the expansion of the super-Hamiltonian 
function 

1 
H (  U. (a 1 = HB(UB) + F 0 H ( j , . j ,  ,... ) l j , & ,  . . . l j 2 ,  

1 
= H ~ ( u s ) + ~ H ( ~ j i ( u ~ ,  u(i,j).  ti, ~ j ) ) L h S j  

1 
4!  

f - H ( i . j , h , k ) ( U B ~  u ( i j ) ,  U[f ,hlr  u(i.kl, Uij ,hlr  U [ j , k l r  u ( h , k ) ,  u ( i j . h . k ) ,  

pifl, (Dljl,  (D (h1 ,  ( D i k j s  (D (L j .h ) ,  p l L j . k l r  p ( i .h .k l9  (D( j .h,k) ) l&hhSk+.  ' ' (12) 

are constants of motion for system (11). 
The main purpose of this paper is to prove that in  the above hypothesis suitable 

closed subsystems of equations ( 1  1) form hierarchies of ordinary Hamiltonian systems 
with respect to ordinary Hamiltonian structures defined in terms of the original 
super-Poisson brackets, The ordinary Hamiltonian functions are given correspondingly 
by complex coefficients in expansion (12), which, consistently with the assumed reality 
of component variables, are taken to be real. To this end consider a finite subset of 
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2n Grassmann indices, which, owing to the completely equivalent role played by all 
of them, can be identified without loss of generality with ( 1 , 2 , .  . . , 2 n } .  It  can be 
proved that the closed subsystem of equations ( 1 1 )  including the evolution equations 
for component variables whose Grassmann multi-indices only contain indices up to 
2n, is Hamiltonian, with Hll,2,...,2n) as the Hamiltonian function, with respect to a 
suitable Hamiltonian structure on the Abelian ring generated by the fixed set of 
component variables. In  order to prove that and to find the Hamiltonian structure 
mentioned, it is obviously enough to work with a generic (even) monomial Hamiltonian 
function 

(13) 
Now, in order for the closed subsystem under consideration to be Hamiltonian with 
Ml,,2....,2n) as the hamiltonian function, the following relations have to hold: 

M ( u ,  9) =u,,u,, . , . u,h'pP,'po2. . . 'pp,,. 

(where Grassmann multi-indices [ c ] ,  [ d ]  are repsectively generic even and odd ordered 
subsets of ( 1 , 2 , .  . . , 2 n ) ) ,  or more explicitly 

&.!!.2 ..., 2 . > =  !U,.!!.> ,..., 2 1 ) :  4 ! . 2  ..... >.,!. ( 1 5 d )  

Here and henceforth the same symbol is used to denote both the original super-Poisson 
and the corresponding ordinary Poisson brackets we are looking for; what is meant is 
clear from their arguments. 

On the other hand, if (U*, H), , , ,  (pP, H)[,] denote the generic coefficients in the 
expansion of the RHSS of equations ( S a )  and (86) respectively, as formal power series 
in Grassmann generators, compatibility of equations (8) with M substituted for H and 
equations (14) reads 

{ U m .  M(1.2 ..... 2 " ) )  =I.-, W , C l  

{(PpJd], M!1,2 ..... In)} = (PO, M ) [ d l .  

( 1 6 ~ )  

(166) 

In order to deduce from equations (16) the Poisson brackets we are looking for, 
consider first of aii the expiicit expressions or'iheir RHss, which appear as coefkienis 
of the power series expansions in Grassmann generators of {U,, M )  and ('pa, M } .  To 
be specific, if the derivation property, equation (76), of super-Poisson brackets is used, 
it turns out that 
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(DPdbtl ' "  tq.~, %,hb,l ... (PB2dbikl (176) 

wherep denotes ageneric element ([a,], [a,], . . . , [ah],  [b,], [b,], . . . , [b,,]) ofthe sets 
of generalized ordered partitions of [c] and [d], containing fixed numbers (second 
and third arguments of P) of even and odd subsets, all [a] and [b] being respectively 
even and odd, except for [a,] and [b,] respectively in the first and in the second sum 
of equation (176), whose parity is exchanged; partitions are called generalized since 
several even elements may coincide with the empty set, the corresponding component 
variables denoting the body of boson supervariables. Finally ~ ( p )  =0, 1 is the parity 
of the permutation of [e] in equation (17a), [d] in equation (17b), corresponding to 
the given partition, namely of ([a,], [a,], . . ., [ah], [b,], [b,], . .., [b,tI), where 
naturally ordered subsets of {1,2,. . . ,2n} are meant. 

M(l,2,,,.,2n~: If the following is substituted for M. 

the explicit expression of the LHSS of equations (16a) and (166) is given by 

with $ replaced by U,,[,] and respectively. 
Comparing equations (17a) and (176) with equation (19), it can be proved that 

compatibility conditions (16a) and (166). if U, w are either U or 'p fields, are fulfilled 

{u7,[gl, ~~,.[~,1~=O,[gl,[g'1~11,2,...,2n} if[g]u[g'l#{1,2, ..., 2n) (20a) 

{%[*I I W,,,[,,I) = (-1) p I ( - l )  "'{U?? w7.}[8ln[gl if[g]u[g']={l,2, ..., 2n) (206) 

where [ g ]  n [g'] denotes the corresponding naturally ordered subset and p I ,  p2 = 0 , l  
respectively the parity of the permutations 

by 

( 1 , 2 , . . . , 2 n ) ~ ( ( l , 2 , . . . , 2 n ) \ t g I , t g l )  (210) 

[E'] + ([g'l\[gl, [s'l n kl).  (21b) 

For details see the appendix, where the proof of antisymmetry and Jacobi identities 
is also given. 

3. Fermion extensions of the Kdv equation 

The K d v  equation is quite popular due to its relevance in the quantization O f  the 
Liouville equation, which in turn is relevant to the quantization of the Polyakov string 
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below the traditional critical dimension [ 1 5 ] .  The generalization of the known relation 
between the KdV equation and the Virasoro algebra [I61 to the integrable space- 
supersymmetric Kdv equation and the super-Virasoro algebra aroused considerable 
interest in Super-Kdv equations [17] .  In order to illustrate the proposed setting with 
some relevant examples, some fermionic versions of this equation are considered in 
the following. 

The proposed fermion extensions of the Kdv equation all have the following general 
form: 

U,=6UlI-U,+eQQp, (22a)  

rPr = f Q x x x  + WxQ f huvx (226)  

where t and x subscripts (which are replaced in the following, where notationally 
convenient, by dot (J and prime superscripts (’)), respectively denote time and space 
derivatives, while U and Q are a bosonic and fermionic field respectively, and e, 1; g, 
h are constant parameters (ordinary numbers). In particular the choice 

e = 3  f = - 4  g = 3  h = 6  (23)  
gives the earliest version, which admits two different super-Hamiltonian realizations 
[ M I .  One of them corresponds to the super-Poisson brackets 

{ u ( x ) ,  u(y)},=8’(x-y) { U ( X ) ,  Q(Y)}i = o  
(24)  

{ Q ~ L  Q ( Y ) ~  = a 8 C - y )  

with a = 1, and the super-Hamiltonian functional 

H I [ %  dx(u’+u:/2+suQQx+ trPQxXx) (25) 

with s = 3 ,  t = -2. The alternative Hamiltonian realization is given by the super-Poisson 
brackets 

{ u ( x ) ,  u ( y ) } 2  = -S”’(x - y) +2u’ (x ) f i (x  - y )  +4u(x)8’(x -y) (26a)  

{ U ( X ) ,  r P ( Y ) h =  Q’(X)s(X - Y ) + 3 Q ( X ) f i ‘ ( X - Y )  (266)  

{Q(X), Q P ( Y ) } i = C ( - S ” ( X - Y ) +  U ( X ) S ( X - Y ) )  ( 2 6 ~ )  

with c = 4  and, for b = 1, by the super-Hamiltonian 

Hz[U, dx(uZ+bQQp,)/2. (27)  

The two space-supersymmetric versions of the Kdv equation are given by equations 
(22a)  and (226)  with 

e = - 3  f = - 1  g = 3  h = 3  (28a)  

e = - 2  f = - 1  g = 2  h = 4  (286) 

respectively [17: 191. The former is super-Hamiltonian with super-Poisson brackets 
given by equations (26 )  with c = -1 and super-Hamiltonian functional corresponding 
to H2 in equation (27)  with b = - 1 ,  while the latter admits a super-Hamiltonian 
realization with superaPoisson brackets and super-Hamiltonian functional given respec- 
tively by equations (24 )  with a = -1 and H ,  in equation ( 2 5 )  with s = -2, t = 1 / 2 .  



According to the general results presented here, closed subsystems of system (291, 
corresponding to evolution equations for component fields with Grassmann indices 
ranging in an even subset, are ordinary Hamiltonian systems. To be specific, the 
ordinary Hamiltonians corresponding to the super-Hamiltonian functionals under 
consideration are given, according to equation (12), for the case of two Grassmann 
indices, by 

H I , C , , ~ I [ U B ,  u ( 1 , 2 ) ,  V i i ] ,  ' ~ i 2 1 1  =I d x [ 3 ~ 2 8 u l ~ , ~ ~ +  U~U(,.~I+~~B~~CI;~(~I-'PC~I'P~II)+~~'PP~(P:)I (30) 

--',,,,',L-(D,, H.. . - , rq , , -~ -,I,',,T,II,T,',I ~~ m,..i=, I ~ . ~ ~ ~ ! ~ ~ ~ ~ C ~ , 2 1 + ~ i ~ ( ~ ) ~ ~ : l - ~ i : j ~ ~ ~ l ) ~ ~ ~ ~  (31) 

The explicit expression of the Hamiltonian functionals 

4 . ( 1 . 2 . 3 , 4 1 =  H j . i ~ , 2 . 3 . 4 1 [ ~ ~ ,  u ( 1 . 2 1 ,  u(1.3) 3 uii.41ui2.31, ui2,41, u0.4). ui1.2.3,41 9 

' P ( I 1 ,  'Pi21, 'Pi3;. 'PC413 'PC1,2.31? 'PC1.2.41, 'P(l.3.41, 'P<2.3,411 

j = 1 , 2  (32) 

for subsystems given by equations (29a)-(29e) with i = 1, j = 2, h = 3, k = 4, which can 
be easily derived from equations (9), (12), (25) and (27), is omitted. 

As to the ordinary Poisson brackets corresponding to super-Poisson brackets given 
in equations (24) and (26). according to the general prescriptions given in equations 
(200) and (206). for the case of two selected Grassmann indices they read respectiveiy 

(33) 
{ u B ( x ) ,  u(l,2)(y)}l= s ' ( x - Y )  {vi&). ' P ~ ~ ~ ( Y ) J ~  = - a a ( x - y )  

{ U B ,  u B } l = { U < I . 2 ) .  ~ i l , 2 1 } 1 = { ' P C B l ,  'P i ! I } l= { 'P i21 ,  'Pi2,}1={u, ' P } I = O  
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={ull,4)(x), q 2 , 3 I ( Y ) } I  = S'(x-Y) 

while those corresponding to equations (26 )  are omitted. It should be remarked that, 
while Jacobi identities trivially hold for Poisson brackets given by equations (33)  and 
(35) .  their direct verification for those defined by equations (34)  would be a rather 
tedious job, which can be avoided since, as proved in general, they are a consequence 
of super-Jacobi identities for the original super-Poisson brackets. 

A relevant consequence of the present setting is the possibility of shedding new 
light on supersymmetry transformations. Consider in fact the two supersymmetric 
versions of the Kdv equation given by equation (22)  with parameters chosen according 
to equations ( 2 8 a )  or (286) .  In orderto rewrite the space-supersymmetry (infinitesimal) 
transformation 

(36G) 

SPP(X) = V d X )  (366)  

in terms of the component fields, develop the anticommuting parameter 7, as an odd 
supemumber, according to the chosen base of the Grassmann algebra under considera- 
tion, namely 

P . . I-  \ r,.., 
~ u \ A I - ' W  I A l  

meaning that it corresponds to a whole (possibly infinite) set of real parameters. The 
above supersymmetry transformation can then be represented in terms of a multipara- 
meter family of transformations for component fields, as follows: 
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b ( i , j . h )  = v ( i ) u ( j , h l -  v ( j l U ( L h ) +  v ( h l u ( ! , j l +  v ( ; , j , h ) u E  ( 3 8 4  

%i,j,h,kl = q ( i l ' P h h . k l -  ~ ( j l p i i , h , k l +  v ( h l ( P ; i , j , k l  - ~ ( k ) p ~ i , j , h l +  q I L j . h l ' P i k 1  

- ~ W , k ) q i h l +  q ( j . h , k ) q [ j l  - ' k , , h , k ) Q [ i l .  

It is easy to check directly that the transformations above are infinitesimal symmetries 
for equations (29) with parameters chosen either according to equation (28a)  or (286). 
To sho- how si;pe:syEEet:y t:acsfo:Eations can be :ea!ized as Hami::aii,aii sym- 
metries in terms of component fields, consider the closed subsystem for two selected 
Grassmann indices corresponding to the supersymmetric version defined by equation 
(28b). It is then straightforward to check that the corresponding two-parameter family 
of transformations obtained from equations (38a)-(38c) for i, j = 1 , 2  is Hamiltonian 
with Hamiltonian generators given by 

, 

and that invariance now simply reduces to the fact that Q, and Q2 in equation (39) 
Poisson commute with 

191 I H1(1.2))~ = {Qz 3 H1(1.21}1= 0. (40) 

4. Concluding remarks 

The most relevant applications of the general result presented here doubtless reside 
in its quantum counterparts, namely in the corresponding quantization methods for 
systems with fermions, in terms of component variables. Leaving aside other quantiza- 
tion procedures, path integral quantization of fermion systems (without abandoning 
the traditional arena of measure-theoretic integration in favour of the merely algebraic 
integration on Grassmann variabiesj, is the prime candidate to which the present 
setting can be applied [ll].  In this context, however, it is not to be expected that the 
use of component variables will soon lead to more powerful tools (with respect to the 
by now traditional ones introduced by Berezin [3]) for analytical calculations, at least 
in the realm of Hamiltonians, or Lagrangians, quadratic in fermion variables. Monte 
Carlo simulations, without special tricks to cope with fermion degrees of freedom, 
should in contrast take substantial advantage from the use 6f commutative variables 
only. The present setting in particular gives the possibility of devising a new kind of 
approximation where a Grassmann algebra with a finite set of generators replaces the 
original infinite dimensional algebra implied in fermion field theories. This approxima- 
tion, corresponding to a reduced Fock space with a maximum total occupation number, 
is under investigation [ll].  

A further honns of .. the .... nronoaed ~ . . ~  .... setting .~~~~ ~ consists in recasting supersymmetry super- 
algebras in terms of ordinary (Hamiltonian) symmetry algebras [20], as suggested by 
the example of the space-supersymmetric Kdv equation. 

Finally, a by-product of the proposed approach is given by the emergence of whole 
new classes of ordinary Poisson structures. 
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It should also be remarked that finite dimensional Grassmann algebras are naturally 
implied in supersymmetric quantum mechanics [21], where the present setting could 
be of help in looking for explicit Nicolai maps [22]. 
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Appendix 

Compatibility condition (16a) is obviously fulfilled if equation (200) holds and if 

for every permutation (i.e. partition) q respectively given by 

( 1 , 2 , .  . . I 2n) * ([ail, [ail, .  . . , [Oh], [hl ,  [bzl,. . . , [bj-il, [bl, [4+11,. . . , [b,,l) 
(A.26) 

and the permutations p corresponding respectively to 

[a1 - ([all, [az],. . . , [a,-,], [a ln[a’ l ,  [a,+,], . . , [ah], [bd, [b21,. . . , [ b 2 J  
[a1 - ([all, [az], . . . , [ah], [ b J ,  [bzl, . .  . , [b,-J, [ a l n l b l ,  [b,+J, . . . , [ b d .  

(A.3a) 
(A.36) 

In order that equation (A.la) actually defines its LHS, the factor (-l)wiq)(-l)w(p’ 

(-1)7<9)(-1)-iPl= (-1)viP,)(-1)=(P2) (A.4) 
where p, and p 2  respectively are the parities of permutations ( 2 l a )  and (216) with 
[a], [a’] replacing [g], [g’]. In fact permutation q can be decomposed as the product 
of the following permutations: 

has to be independent of the particular partition q, which is actually the case since 

(1,2,. . . ,2n) - ( (L2 , .  . . ,2n)\[aI, [a]) (A.5) 

. . . * ( (1 .2 , .  . . ,2n)\[al, [a,], [ a A .  . . , [a!-11. [a1 
n[a’l,[a,+,l, ..., [ahl,[b,l,[bzl,. . . , [ b z k l )  (A.6) 

. . .  *([a,l,[a,I, ..., [a, -, l , ( l , 2 ,  . . . ,  2n)\[al,[al 
n [a’ l ,  [a,+,l, . . . , [ahl,[b,l,  [ b ~ l , .  . . ,[~zJ (A.7) 

. . .*([U,], [ail, .  . . , CO,-,], [a’], [a,+,], . . . , [ah], [hl, [bzl.. . . , [ b z k l )  (A.8) 
where dots denote the result of the previous permutation. Moreover permutation (AS) 
coincides with (21a) for [a] replacing [g], permutations (A.6) andp in equation (A.30) 
have equal panties, permutation (A.7) is always even, and finally the parities of 
permutations (A.8) and (21b) with [a], [a’] replacing [gl, [g’l coincide. Equation 
(A.4) then easily follows, which gives equation (206) for two U variables. 
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A strictly analogous proof, which is omitted, also works for equation (A.16) and 
for what refers to equation (166). The only variant is encountered in defining the 
Poisson bracket between two rp fields, in which case the analogue of permutation (A.7) 
is even or odd according to the parity of the analogue of index j ;  the ensuing (-I)'+' 
factor is then compensated by the same factor in equation (176). 

As to antisymmetry, the condition 

{um,[n], ud,[d])= - { U d . r ' q ,  um.[aJ (A.9) 

is equivalent to ( - l )pl(- l )p2= (-l)pL(-l)pG where p I ,  p 2  respectively are the parity of 
permutation (21a) and (216) with a, a' replacing g, g', and p i ,  p ;  are obtained from 
p , .  p 2  by exchanging a and a'; but this is true since, if this equality is rewritten as 

(A.lO) 

one easily sees that it is in turn equivalent to the equality of the parity of the following 
permutation: 

(1,2 ,..., 2n)+((1,2,. . .,Zn)\[a1,(1,2,. . . , zn) \ [a ' l , [a In[a ' l )  (A . l l )  

to the parity of the permutation obtained by exchanging [a] and [a ' ] .  This last equality 
obviously holds since both ( I ,  2,.  . . ,2n)\[a] and (1,2,. . . , 2n)\[a'] are even multi- 
indices. Also in this case a strictly analogous proof can be given for the antisymmetry 
relations 

{um,[a], 'p,,[bl} =-{'PS,[bl? um..[ol} (A.12) 

{V&[blr pp:[b'])= -{Vp'.[h'], 'Pp.lb]} (A.13) 

where the only variant is met in verifying (A.131, which, since super-Poisson brackets 
are symmetric in fermion fields, i.e. 

{P~pa,rppP~~={%,, (Pp}  (A.14) 

(-1) pi(  -1) p i  = (-1) pi( -1  ) ~2 

amounts to 

(-])P,(-l)Pi= -(-l)P;(-l)P* (A.15) 

finally, equation (A.15) holds due to the oddness of multi-indices (1,2, .  . . ,2n)\[b] 
and (i,z,. . . , in) \ [b ' ] ,  which appear in the analogue of permutation (A.11). 

As to the Jacohi identity, let 1; g,' h, be three arbitrary, either boson or fermion, 
supervariables, and, if [g], [g ' ]  are Grassmann multi-indices with indices ranging in 
{1,2,. . . , Zn} ,  as in equation (20b), introduce the following notation: 

"9 [g'l) 'PI +PZ (A.16) 

with p , ,  p 2  defined according to equations (ZOb), (210) and (216). Then equation 
(206) implies 

{&I ,  {€![Yl, ~ ~ ~ 1 1 ~ + ~ ~ 1 ~ 1 3  { & I >  ~ [ , l ) } + { g [ u l ,  {hrv l . f r* l l }  

(1; k, h } )  ~ ~ ~ r l . ~ n l l + o ~ ~ ~ l . ~ ~ l ~ ~ ~ l l  = [ ( - I )  

f ( ~ * ) ~ ~ ~ ~ l . l r l l + o ~ ~ ? l , ~ ~ l n ~ r l l  { h ,  {1; g)} 
f ( ~ ~ ) ~ ~ ~ n l . ~ ~ l l + ~ ~ ~ v l . ~ ~ l ~ ~ ~ l l  

~ r p l ~ ~ ~ l = ~ ~ l ~ ~ ~ l = ~ ~ l ~ ~ ' ~ 1 = ~ ~ . ~ ,  . . . Jn). 

k, { h , f } ) l i e i n i v i n i r l i  

if 

(A.17) 

(A;18) 
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(If equation (A.18) is not fulfilled, the corresponding Jacobi identity is trivial since 
the three terms involved vanish separately.) According to equation (A.16) the exponent 
in the first term of the RHS of equation (A.17) is given by the sum of the panties of 
the following permutations: 

(1,2,. , . , 2 n ) +  ((1,2,. . . , 2n ) \ [ r l ,  [ r l )  (A.19a) 

[~1+( [771 \ [~1 ,  [ r l l n [ r l )  (A. 19 b) 

(1,2.. , . J n ) + ( ( 1 , 2 , .  . . ,2n) \ [vl ,  [vl) (A.19~) 

[rl n 1771 + (([rl n C?I\[vl, [PI n [rl n [TI) (A.19d) 

while the sum of the parities of the permutations 

(1*2 , . . . , 2n )+( (1 ,2 ,  .. . ,2n) \ [vl . [vl)  (A.20a) 

[ r l + ( [ r l \ [ v l ,  [ r l n [ v l )  (A.206) 

(1 ,2 , .  . .12n)+ ((L-2,. . . , Zn)\[vl, [TI) (A .20~)  

[vln[rl+ ( ( [ v l ~ [ r l ) \ [ ~ J ,  [vln [vlnlvl)  (A.2Od) 

gives the exponent in the second term. Now equality of these two exponents is obviously 
equivalent to the equality of the parity of the two following permutations: 

( I , & .  . . , 2n )+( (1 ,2 , .  . . J n ) \ [ v l ,  [ r l \ [ v l ,  ( [ r l n [ v l ) \ [ t l l ,  [ v l n [ r l n [ a l )  

=((1,2 ,..., 2n)\[r1,(1,2 ,..., 2n)\[v1,(1,2,...,2n)\[771, 

[PI n lrln [ 771) (A.21a) 

(1,2 ,..., 2n)+((1,2, .  . . , 2 n ) \ [ ~ l ,  [ t l l \ [ r l ,  ~ ~ ~ l ~ ~ r l ~ \ ~ v l , ~ v l ~ ~ r l ~ ~ ~ l ~  
=( ( I ,  2, .  . . ,2n)\[77l, . . ,2n) \ [vl ,  ( L 2 , .  . , ,2n)\[vI,  

[ v l n [ r l n [ ~ l )  (A.216) 

where equation (A.18) was used, which in turn is equivalent to 

#([Tl)[*([PI)+ #([rl)l = o  (mod 2) (A.22) 

where the symbol # is used to denote the number of elements of multi-indices. Equality 
of exponents in the two other possible couples of terms in the RHS of equation (A.17) 
obviously leads to two relations obtained from equation (A.22) just by cyclic permuta- 
tions of Grassmann multi-indices. By using these two relations together with equations 
(A.22) and (A.17), the generic Jacobi identity is obviously seen to be equivalent to the 
following: 

[ ( ~ ~ ) * l ~ ~ l ~ * ~ ~ ~ l l  {f, {g, h})+(-l)*([nl)x([’l) Ih, If, gH 

+ ( -l)*([yl)’c[ql){g, { h,f}}] [vln[rln[.ll= 0 (A.23) 

which is a consequence of graded Jacobi identity in equation (7a), since, if is a 
generic coefficient in the expansion of the supervariable # as a power series in 
Grassmann generators, then obviously 

9(#) = #([€!I) (mod 2). (A.24) 
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