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Abstract. Hamiltonian theories with fermions are proved to be equivalent to hierarchies
of ordinary Hamiltonian theories. The corresponding Poisson brackets are defined in terms
of the original super-Poisson structure, while Hamiltonian functions are simply the
coefficients in the expansion of the super-Hamiltonian function as a2 formal power series
in Grassmann generators. Fermion extensions of the kdv equation are considered to
illustrate the general result; its space-supersymmetric extensions are used to show in
particular how supersymmetry transformations can be recast as ordinary Hamiltonian
symmetries.

1. Introduction

The problem of defining a more or less formal classical limit for fermion systems has
a long history [1]. Apart from its merely speculative meaning, it is relevant 10 the
Feynman path integral quantization method, where the notion of classical phase, or
configuration, space plays a crucial role [2]. As is well known, the path integral
quantization procedure was extended long ago to fermion systems by Berezin in terms
of a purely algebraic notion of the integral on fermion degrees of freedom [3]. This
approach led to the introduction of the concept of a (pseudo-)classical superdynamical
systern [4], as a system with both traditional bosonic and anticommuting fermionic
variables; this notion became widely popular among physicists in particular due to
the emergence of superstring theory [5].

As to the generalization of classical dynamics mentioned above, several attitudes
are possible. The simplest choice is to work in a purely algebraic setting in analogy
to the Berezin approach to the Feynman path integral on fermion variables. In this
context the formulation of classical dynamics in terms of derivations on the ring of
smooth functions on a given phase manifold, or related settings, can be taken as the
starting point [6]f. It is then quite natural to generalize this notion of the classical
dynamical system, just taking more general non-Abelian rings as dynamical variable
sets. In particular a Z, graded ring %, i.e. such that

e =(—1)5°" "o (1)

where p, i are pure elements, i.e. of definite grading a(¢ ), g(¥) = 0, 1 € Z,, is presumably
the most general arena for superdynamics. However, this extremely general axiomatic

+ A related aspect consists of the algebraic characterization of tangent and cotangent bundles and correspond-
ingly of their Lagrangian and Hamiltonian vector fields [7].
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context has several limitations, the most severe being the lack, without further
specifications, of the notion of flow corresponding to a given supervector field (deriva-
tion). Furthermore it deprives path integral quantization of its strongly advocated
probabilistic interpretation, which is already present in the original Feynman concep-
tion [8] and, strictly speaking, is rigorously established for its Euclidean version [9].

What can be considered in some sense the opposite constructive viewpoint, was
recently applied to show how some graded extensions of the kdv equation can be
recast in terms of ordinary Hamiltonian field theories, which in particular admit
bi-Hamiltonian structure if the corresponding superdynamics does [10]. It was also
shown that the ordinary Hamiltonian systems constructed starting from the space-
supersymmetric versions of the kdv equation admit, in correspondence with the original
supersymmetry transformations, ordinary Hamiltonian symmetries, The aim of the
present paper is to prove that this construction works in general for arbitrary super-

Hamiltonian systems, by giving the general prescription for obtaining the ordinary

Hamiltonian structures from the super-Hamiltonian ones. The general results will then
be applied to the 1+1 dimensional superfield theories already mentioned.

The motivation is twofold: first, the proposed transcription of superdynamics, in
terms of ordinary dynamics only containing commuting variables, removes the subtleties
inherent in the very notions of time flow and super-Hamiltonian integrability; second,
it leads to the possibility of defining the path integral on fermion variables in terms
of ordinary measure-theoretic integration [11]. This last point is particularly relevant
since it recovers the probabilistic interpretation and then, for instance, avoids the need
for ad hoc tricks to perform Monte Carlo simulations of fermion systems [12].

To fix language and notation, consider the traditional context in which super-
dynamics is usually formulated. The implied ring F is generated by two families
(Ua)aen, (®p)per of pure elements

o(u,) =0, e B; g(ps)=1 BeF (2)

respectively corresponding to bosonic and fermionic degrees of freedom. The families
B and F of bosonic and fermionic indices (which are in principle independent, except
for supersymmetric theories}, can be either finite or infinite; in particular they are
formally considered non-denumerably infinite if field theories are involved. Time
evolution is then defined by putting

t, =X, (u, @) achB (3a)
¢ = Ya(u, @) BeF (3b)

where X,, Y}, are in general formal series in their arguments and mostly just poly-

nnn‘pn]c while hara and hancafarth hald charactare u and @ denanta the whala FQI‘Y\llt.FlQ

ANFRAzaleiTy YYLiAAW Liwiw QUM MIWHIWAWAVE WAL UV WGiavevia S er Qs TAWERW W LEAY TR AANJAW R iRAAARAE

of Bose and Fermi variables. The above equations are usually considered as transcrip-
tions in local coordinates of a dynamical equation for a vector field globally defined
(or in principle globally definable) in some suitable supermanifold [13). Here only the
local aspects will be considered; the global analysis of the present proposal will be
treated elsewhere [14].

The present paper is concerned in particular with super-Hamittonian dynamics; in
such a case the rHss of equations (3a4) and (3b) are assumed to be local components
of a super-Hamiltonian vector field corresponding to a specific super-Hamiltonian
structure and super-Hamiltonian function H, which is a suitable even (i.e. g( H)}=0)
element of #. To be specific, a super-Hamiltonian structure on & is given in terms of
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a super-Poisson bracket, i.c. a graded antisymmetric c-map

(LeeFxF—{fgleF (4)

satisfying the graded Jacobi identity and being a derivation with respect to both
arguments, To be a graded antisymmetric c-map means that

{8, f}=—(-1)2"8&f g} (5)

g({f, gD =g(sg) =g(f)+g(g) (mod2) (6)
while the graded Jacobi identity and derivation property respectively read
(=15 £ g, B} + (=1 Db, {f, g+ (=129 (g, {h, f1} =0 (7a)

{f, gh}=(—1)*"%®g{f b} +{f, g}k (7b)

where £, g, h are pure elements of % The super-Hamiltonian character of equations
(3a) and (3b) then means in particular that their rRuss are given by

Xo(u, @) ={u,, H} (Ba)

Yo(u, @) ={¢s, H} (85)
and in general that, for a generic element f of &,

f={f H}. (8¢)

2. From super-Hamiltonian back to Hamiltonian systems

In order to recast super-Hamiltonian dynamics in an ordinary Hamiltonian setting,
consider explicitly the u and ¢ as local coordinates on a supermanifold locally modelled
on CI P x CH, #(B) and #(F) respectively denoting the (possibly infinite) number
of boson and fermion degrees of freedom [13]; here C. denotes the subalgebra of
commuting supernumbers, g(C.) =0, and C, the subspace of anticommuting ones,
g{C,)=1. This means that the u and ¢ can be represented as follows:

Uy = Uy g +% (Zk)' ﬂ,UlJz.---Jzk)é}l é’J"z T in. (9a)
1
'] =§ (2_];___1-5“" ‘Pﬁ-(j[,jz.----flk—])g}lgjz R Qu—: (9b)

where u, 5 is the body of u,, while the sum in (9a) is its soul u, s and the summation
is implied on repeated Grassmann indices. Here ¢, &>, ..., &k, ..., with {ii+Edi=0,
are a family of generators of the Grassmann algebra A, whose dimensionality is
irrelevant in what follows. If in particular A = A, which is always implicitly assumed
in field theory in order for the corresponding quantum theory to be able to accommodate
the whole Fock space, expressions given in equations (%a) and (9b) are to be meant
as formal series, thus avoiding any notion of convergence in A, [13]. Finally, power

n\l and fﬂﬁ\a a Ainary rnmmlav varinhila
series coefficientsin eq"""-’}ﬂa {9 4 and(yo;are orginary Compatx variauoics, \.uuxplctcly

antisymmetric in their Grassmann indices. Here for simplicity they are assumed to be
real, which does not imply that u and ¢ are real supernumbers, since, although
Grassmann generators are taken as usual to be real, i.e. 7§ = £, their products £, &5. .. &
are real or imaginary according to the value of k [13].
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As to functions X, and Y, appearing in equations (3a) and {3b), it is worth
remembering that they are defined as power series in ¢ and in the souls of u [13];
once expressions given in equations (94) and (9b} are substituted for u and ¢ in these
series, X, and Y; are given as (formal} power series in Grassmann generators as follows:

1
Xa("’¢)=Xa.8("3)+§mxa.m.jz ..... ol @ra)d b, &, (10a)

1
Yo(u, )=} k=11 L CTIE T (I ) [ 4N I S (10b)

k

where power series coefficients are oridnary complex variables, fulfilling the same
antisymmetry and reality (for consistency) requirements as for coefficients in equations
(9a) and (9b), and {c], [d] denote generic (respectively even and odd) Grassmann
muiti-indices, i.e. ordered subsets of {Jf;,/,..., /2t in equation (i0a) and
{j1sJ2,s - - - + Jok—1} iN equation (10b}. Once expressions {9a), (9b), (10a) and (10b) are
substituted for left- and right-hand sides in equations (3a) and (3b), an equivalent
ordinary differential system for real coeflicients of the expansions (9a) and (98}, from
now on called component variables, is obtained:

tia 5= X, plUp) (11a)
B = Yo (Mg, €i)) (11b)
o (i) = Xo i) (> iy )y P (11c)
Patiiny = Yo i (88, i j)s Biinys Bjmys P> iy Pih)» Pliiny) (11d)

tha i gy = X i k) (MBs B 3 Uiy s ks Heims B ks Uch ichs Mg k) s

@iirs Lijre Pirys Pkys Pl jbrr Plig ks Liihk)n ("(j,h.k)) (11¢€)

If equations (3a) and (3b) are assumed to define a super-Hamiltonian system according
to equations (8a) and (8b), then coefficients in the expansion of the super-Hamiltonian
function

1
H(u, ¢ )= Hg(up) +§. @k) L2 (TN X (N O

1
= HB(“B)'{'; Hii i85, Wi, €0y, €048

1
= Hiinaof e, Ui jys Biny Biik)s Bim Biks %nkys Wi jnk)s
4!

@Livs Blin P> Pikrs Bliiny Blijirs Piimir Pk Skt - (12)

are constants of mation for system (11).

The main purpose of this paper is to prove that inn the above hypothesis suitable
closed subsystems of equations (11) form hierarchies of ordinary Hamiltonian systems
with respect to ordinary Hamiltonian structures defined in terms of the original
super-Poisson brackets. The ordinary Hamiltonian functions are given correspondingly
by complex coefficients in expansion (12), which, consistently with the assumed reality
of component variables, are taken to be real. To this end consider a finite subset of
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2n Grassmann indices, which, owing to the completely equivalent role played by all
of them, can be identified without loss of generality with {1,2,...,2n}. It can be
proved that the closed subsystem of equations (11) including the evolution equations
for component variables whose Grassmann rulti-indices only contain indices up to
2n, is Hamiltonian, with H; ;.. 2n as the Hamiltonian function, with respect to a
suitable Hamiltonian structure on the Abelian ring generated by the fixed set of
component variables. In order to prove that and to find the Hamiltonian structure’
mentioned, it is obvicusly encugh to work with a generic (even) monomial Hamiltonian
function

Mu, @)=u, Uy, .. U ®p Cp, - - - Ppyy- (13)

Now, in order for the closed subsystem under consideration to be Hamiltonian with

M, 5.. 2n) as the hamiltonian function, the following relations have to hold:
X fe1= {tarers M2, 2m} (14a)
Y,B,[d] = {Goa,[d] > M(l,2.....2n)} (14b)

{where Grassmann multi-indices [¢], [d] are repsectively generic even and odd ordered
subsets of {1,2,...,2n}), or more explicitly

Xﬂ,B = {ua,ﬂ * M(I,Z.‘..,Zn)} (]50)

Yo = {esms Mas,.2m} (15b)
Xotiy={taijis M2,..2m} (15¢)
XKoo am={Ua 12 201, M!zzn\} (15d)

..............

Here and henceforth the same symbol is used to denote both the original super-Poisson
and the corresponding ordinary Poisson brackets we are looking for; what is meant is
clear from their arguments.

On the other hand, if {u., H}.y, {¢a, H}4) denote the generic coefficients in the
expansion of the rRHss of equations (8a) and (8b) respectively, as formal power series
in Grassmann generators, compatibility of equations (8) with M substituted for H and
equations (14) reads

{sarer, Mz, 2m} = {ta, M} (16a)
{@s1a1s M 2,.2mt = {®p, M}par. (16b)

In order to deduce from equations {16) the Poisson brackets we are looking for,
consider first of aii the explicit expressions of iheir RHss, which appear as coefficienis
of the power series expansions in Grassmann generators of {u,, M} and {¢.., M}. To
be specific, if the derivation property, equation (7b), of super-Poisson brackets is used,

it turns out that

{ua!M}[c]= Z (_])'rr(p][z. um.[ﬂl]"'{uﬂ" uﬂ;}[ﬂ,‘]

pePi[cl.h2k)

Xouos Uy [a, YPBL[6 ] - - - $Bolba]

L o (2] Yo Lan1PBLI0T - - L ®a, e - - - ‘PBZk,[bzk]] (17a)
¥
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—_ {
{¢cn M}[d] - pEP([d]§—1 P (_1)” p)é: uﬂb[“i] e {ﬁpas ua_,}[ajl

X uah-[ﬂh]¢|ﬂ1;[b1] e qpﬁza.[bzk]

+ ¥ 1) Y (-1) 1y e
pEP([d]‘h-H,zk—l)( ) ),:( ) aviai] =nlan]

X @proy] - - {Pas @8, 101+« « Poaelbn) (17b)

where p denotes a generic element ([a,],[a.], ..., [a], [51],[B2), . .., [bs:]) of the sets
of generalized ordered partitions of [¢] and [d], containing fixed numbers (second
and third arguments of P) of even and odd subsets, all [a] and [b] being respectively
even and odd, except for [g;] and [b;] respectively in the first and in the second sum
of equation (17h), whose parity is exchanged; partitions are called generalized since
several even elements may coincide with the empty set, the corresponding component
variables denoting the body of boson supervariables. Finally #(p) =0, 1 is the parity
of the permutation of [¢] in equation {17a), [d] in equation (175), corresponding to
the given partition, namely of ([a,),[a2),...,[a ], [81],[b2]....,[bs]), where
naturally ordered subsets of {1,2,...,2n} are meant.

If the following is substituted for M, = M, ; )

— (q)
M, = z (1) " by 0oy L] - - - Yo [0, 1986 1P B2 [0+« + PR be] (18)
ge P({1,2,....2n} h,2k}

the explicit expression of the LHss of equations (16a) and (16b) is given by

(
{"p’ Mn} - Z (_l)v Q)[E L ERERE {'I’: uafs'[‘-"ﬂ} sos Uy 0,198,000~~~ PBawlba}
qe P({1,2,...,2n},h,2k) J

L Yoy fa] - - Uay (2,190,080 - - - (5 Pa,50) - - - ‘P.szk.[bu]] (19)
J

with ¢ replaced by u, . and g 4; respectively.

Comparing equations (17a) and (17b) with equation (19), it can be proved that
compatibility conditions (16a) and (165), if v, w are either u or ¢ fields, are fulfilled
by

{03121, Wyent =0, [g], [8]={1,2,..., 20} if[glulg1#{1,2,...,2n}  (20a)
{v‘y,[g]! w*y',[g’]}=(“1)pl(_1)p2{vy’ w'y'}[g]r\[g'] |f[g]u[g’]={1, 2;-- . ,2"} (ZOb)

where [g]n[g'] denotes the corresponding naturally ordered subset and py, p»=0, 1
respectively the parity of the permutations

(1,2,...,2n)> ({1, 2,..., 200\ g). f&]) (21a)
(g']- ([g'1\[g). [g') [g]). (215}

For details see the appendix, where the proof of antisymmetry and Jacobi identities
is also given.
3. Fermion extensions of the xav equation

The kdv equation is quite popular due to its relevance in the quantization of the
Liouville equation, which in turn is relevant to the quantization of the Polyakov string
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below the traditional critical dimension [15]. The generalization of the known relation
between the kdv equation and the Virasoro algebra [16] to the integrable space-
supersymmetric Kdv equation and the super-Virasoro algebra aroused considerable
interest in super-kdv equations [17]. In order to illustrate the proposed setting with
some relevant examples, some fermionic versions of this equation are considered in
the following.

The proposed fermion extensions of the kav equation all have the following general
form:

U, = OUU, — Uy T €QPy, (22a)
@1 = fPun + gt + hug, (22b)

where 7 and x subscripts (which are replaced in the following, where notationally
convenient, by dot (*) and prime superscripts (")), respectively denote time and space
derivatives, while 4 and ¢ are a bosonic and fermionic field respectively, and e, f, g,
h are constant parameters (ordinary numbers). In particular the choice

e=3 f=-4 g=3 h=6 (23)

gives the earliest version, which admits two different super-Hamiltonian reahzatlons
[18]. One of them corresponds to the super-Poisson brackets

{u(x), u(y)h=8(x-y) {u(x), (3 h =0

(24)
{e(x), ¢()h = ad(x—y)
with @ =1, and the super-Hamiltonian functional
Hi[u, ¢]=J dx (2’ + ui/ 2+ sup@s + (9P ) (25)

with 5 = 3, t = —2. The alternative Hamiltonian realization is given by the super-Poisson
brackets

{u(x), u(y)},=—8"(x—y)+2u'(x)8(x — y) +4u(x)s'(x —y) (26a}
{u(x), e(¥)}r= ¢ (x)8(x —y)+3p(x)8'(x—y) (26b)
{e(x), p(P)h=e(=8"(x —y)+u(x)d(x-y)) (26¢)

with ¢ =4 and, for b = 1, by the super-Hamiltonian

HZ[“; gp]:j dx(u2+b¢¢x)/2' (27)
The two space-supersymmetric versions of the kdv equation are given by equations
(22a) and (22b) with
e=-3 f=-1 g=13 h=3 (28a)
e=-2 f=-1 g=2 h=4 (28b)

respectively [17,19]. The former is super-Hamiltonian with super-Poisson brackets
given by equations (26} with ¢ = —1 and super-Hamiltonian functional corresponding
to H, in equation (27) with b=—1, while the latter admits a super-Hamiltonian
realization with super-Poisson brackets and super-Hamiltonian functional given respec-
tively by equations (24) with @ =—1 and H, in equation (25) with s =-2, t=1/2.
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Once the superfields # and ¢ are developed according to equations (9a) and (9b),
with the continuous variable x (replacing both discrete indices o and 8) omitted,
equations (22a) and (22b) can be rewritten in terms of component fields, as an instance
of equations (11a)-{11¢), as follows:

g =6ugug—up (29a)
Gy =f@ iyt BU RO T+ hup@ir, (29b)
tign k) = 6UBU{p sy T O ) U = Ulh )+ e @@ (k) = Pren) (28¢)

GGy = foUinir + 8UaP G piy + 8(U( 0 Py + CB) + RUtpl k)

+ h(u ;@ (xy+CP) {294d)
Uik = O(Ugl a sy} + 608G jy Uin i) = U Yjn + s Uogm) — Wm0

+ e(‘P(i)QDE’j.h,k) - ¢(j]¢'?i,h,k) + fP(h)ﬁpfi,j,k) - ‘P(k)‘P?i,j,h])

— e(@(n®linr — PnPunk T PPk — PUaPG,m) (29e)

According to the general resulis presented here, closed subsystems of system (29),
corresponding to evolution equations for component fields with Grassmann indices
ranging in an even subset, are ordinary Hamiltonian systems. To be specific, the
ordinary Hamiltonians corresponding to the super-Hamiltonian functionals under
consideration are given, according to equation (12), for the case of two Grassmann
indices, by

Hl,(l,Z)[uBa Ue12ys €1y s P2

_ 2
= J’ dx[3uﬂu(l,2)+ "3"21,2)"‘5“3(69(1)‘;052)" 49{2}49{1))4'2‘401‘49'2" (30)
H 1 alte, wa .z, em» 0] = f dx[2uguq 2t b{enye )~ P@9n)]/2 (31

The explicit expression of the Hamiltonian functionals
Hj,(1,2,3,4}= H‘,(|,2.3.4)[“B, Uiy 2y, U3y, Ui e U3, B, Hiaaey, W24,

Pins P2ys P3)s Prays P1,2,3) P2.4)s P13 4y 4”(2,3,4)}
i=12 (32)

for subsystems given by equations (29a)}-(29¢) with i= 1, j =2, h =3, k=4, which can
be easily derived from equations {9), (12), {25} and (27), is omitted.

As to the ordinary Poisson brackets corresponding to super-Poisson brackets given
in equations {24} and (26), according to the general prescriptions given in equations
{20a) and (20b), for the case of two selected Grassmann indices they read respectively

{ug(x),u(l‘z)(y)}1=8'(x—y) {em(x), ‘P(z)(.V)}a =—ad(x—y) (33)

{us, ush = {“(1.2), u(l,2)}1 ={eay, ‘P(n}l = {ﬁﬂ’(z)a 49(2)}1 ={u, o}, =0
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and
{ug, ugh ={us, o} ={e, en) =0 i=12
{ua(x), unay(¥)h=—8"(x ~ y) + 4up(x)8'(x ~ y} + 2uf{x)8(x — y)
{01,y (X), 1 2(0)}a = Sug 2y (x)8'(x — y) + 2uf, 2y(x)8(x — ¥) (34)
{u2)(x), €;(¥)} =3¢, (x)8'(x —y) + j(x)8(x - y) i=12
{e)(x), e (¥)la=c[8"(x = y) — us(x)8(x = y)].

For the case of the four Grassmann indices, Poisson brackets corresponding to
equations (24) are given by

{201, s ={@0srs Pl =1{@, u} =0 nsuwyz=12734
{ug, ugh ={u(r.s) ’ u(r,s)}l ={u(1,2,3,4), I/‘(1,2,3,4)}1 =0 r,s=1,2734
{GP(I)(X), ¢’(2.3,4)(}’)}1 = ‘{‘P(z)(x), 99{1,3,4;(}’)}1 = {‘P(3)(x), ¢(1,z,4)(}’)}1

(35)
= —{99(4)(x), ‘P{n,z.a)(}’)}l =—8(x—y)}

{uB(x); u(1,2,3,4)(}’)}1 = {”(1,2}(x). “(3,4)()7)}1 = _{u(l,ﬁl)(x): “(2‘4)(.}’)}1
={u g(x), U 3(¥)} =8 (x~y)

while those corresponding to equations (26) are omitted. It should be remarked that,
while Jacobi identities trivially hold for Poisson brackets given by equations {33) and
(35), their direct verification for those defined by equations (34) would be a rather
tedious job, which can be avoided since, as proved in general, they are a consequence
of super-Jacobi identities for the original super-Poisson brackets.

A relevant consequence of the present setting is the possibility of shedding new
light on supersymmetry transformations. Consider in fact the two supersymmetric
versions of the Kdv equation given by equation {22} with parameters chosen according
to equations (28a) or (28b). In order to rewrite the space-supersymmetry (infinitesimal)
transformation

in terms of the component fields, develop the anticommuting parameter 7, as an odd
supernumber, according to the chosen base of the Grassmann algebra under considera-
tion, namely

1
n E%m n[j[-jz---jzk—l)gjléz Le g..‘zk—l (37)

meaning that it corresponds to a whole (possibly infinite) set of real parameters. The
above supersymmetry transformation can then be represented in terms of a multipara-
meter family of transformations for component fields, as follows:

St =0 (38a)
deuy = M Ue (38b)
Bug ) = N (H— MpH®H (38¢)
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8@ i = MoMom ™ N lem T Mot T 26 mus (38d)
UG jh sy = NP Gk = MGHPlmd) T TP g = MNP im0 1mP k)
= s @im T My PGy~ Mnk) €0 - (38e)

It is easy to check directly that the transformations above are infinitesimal symmetries
for equations (29) with parameters chosen either according to equation (28a) or (285).

Tr chan han marcummatey + £ * Anine avre
To show how supersymmetry transformations can be realized as Hamiltonian sym-

metries in terms of component fields, consider the closed subsystem for two selected
Grassmann indices corresponding to the supersymmetric version defined by equation
(28b). It is then straightforward to check that the corresponding two-parameter family
of transformations obtained from equations (38a)-(38¢) for i, j =1, 2 is Hamiltonian
with Hamiltonian generators given by

Q:lup, o1y, 0235 U12)] =j dx((P(z)uB)
(39)
Q:lus, ¢y, w2y, Ul = J. dx(_‘Ptl}uB)

and that invariance now simply reduces to the fact that Q, and @, in equation (39)
Poisson commute with Hy 2

{Q., H1(1,2)}1={Qz, H1(1.2)}1=0- . _ (40)

4. Concluding remarks

The most relevant applications of the general result presented here doubtless reside
in its quantum counterparts, namely in the corresponding quantization methods for
systems with fermions, in terms of component variables. Leaving aside other quantiza-
tion procedures, path integral quantization of fermion systems {without abandoning
the traditional arena of measure-theoretic integration in favour of the merely algebraic
integration on Grassmann variables), is the prime candidate to which the present
setting can be applied [11]. In this context, however, it is not to be expected that the
use of component variables will soon lead to more powerful tools (with respect to the
by now traditiona! ones introduced by Berezin {3]) for analytical calculations, at least
in the realm of Hamiltonians, or Lagrangians, quadratic in fermion variables. Monte
Carlo simulations, without special tricks to cope with ferrmon degrees of freedom,
should in contrast take substantial advantage from the use of commutative variables
only. The present setting in particular gives the possibility of devising a new kind of
approximation where a Grassmann algebra with a finite set of generators replaces the
original infinite dimensional algebra implied in fermion field theories. This approxima-
tion, corresponding to a reduced Fock space with a maximum total occupation number,
is under investigation [11].

A further bonus of the proposed setting consists in recasting supersymmetry super-
algebras in terms of ordinary (Hamiltonian) symmetry algebras [20], as suggested by
the example of the space-supersymmetric Kdv equation.

Finally, a by-product of the proposed approach is given by the emergence of whole
new classes of ordinary Poisson structures.
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It should also be remarked that finite dimensional Grassmann algebras are naturally

implied in supersymmetric quantum mechanics [21], where the present setting could
be of help in looking for explicit Nicolai maps [22].
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Appendix

Compatibility condition (16a) is obviously fulfilled if equation (202) holds and if

{ua,[a]s ua',[a']} = (_I)F(Q)(_l)ﬂ(p){uﬂa ua’}[a]n[a'] [a] v [a'] = {1; 2; ey 2"}
(Ada)
{Hagats €o)} = (= 1) ™O(=1)""{u,, @p}ta1nre) (alu[b]={L,2,...,2n}
(A1)

for every permutation (i.e. partition) g respectively given by

{1,2,....20) = ([a;],[aJ], . .., [aj—l], [a'], [aj+l]: v lan ) ) [6s), .o [has])
{A.2qa)

(1’ 25 AR 2”) g ([al]s [aZ]w LR | [ah]s [bl]: [b2]’ Tty [bj—l]a [b]a [bj+l], ] [bZk])
(A2b)

and the permutations p corresponding respectively to
[a]l— ([a],[a:]), .. .. (a1 [adnla], [aa), - . [an), [, [62), . .. [Bok])  (A3a)
[al—([a;}[a:]), ..., (@], [Ba], [B2], ..., [B1 ), [adn [B), (B, - . [B2]). (A3D)
In order that equation (A.1a) actually defines its LHs, the factor (—1)"'9(—1)"»
has to be independent of the particular partition g, which is actually the case since
(_l)w(q)(_l)w{p)=(_1)w(p,)(_1)w(p2) (A.4)

where p, and p, respectively are the parities of permutations {21a) and {218} with
[a], [a'] replacing [g], [g']. In fact permutation g can be decomposed as the product
of the following permutations:

(1,2,...,2n)—((1,2,...,2na\[a], [a]) (A.5)
e (1,200, 200\ [a), [a], [a2), . .., [a-a ], a]

nlal gl .. [a]. [21],[b2), ... (B3]} (A.6)
oo ({ad, [as], -, (920, (1,2, 000, 200\ [a], [a]

~[a'], [aj+1], oo (@], [0, [B:), .- [Ba]) (A7)
o= ([allal,. L leoa) @[] [an [0, 062, - [B2k]) (A.8)

where dots denote the result of the previous permutation. Moreover permutation (A.5)
coincides with (2ta) for [a] replacing [g], permutations (A.6) and p in equation (A.3a)
have equal parities, permutation (A.7} is always even, and finally the parities of
permutations (A.8) and (21b) with [a], [a'] replacing [g], [g'] coincide. Equation
(A.4) then easily follows, which gives equation (20b) for two u variables.
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A strictly analogous proof, which is omitted, also works for equation (A.tb) and
for what refers to equation (164). The only variant is encountered in defining the
Poisson bracket between two ¢ fields, in which case the analogue of permutation (A.7)
is even or odd according to the parity of the analogue of index j; the ensuing (~1)’~"
factor is then compensated by the same factor in equation (175).

As to antisymmetry, the condition

{urx,[a]s ucv',[a']} = _{ua’.[a'] » ua,[a]} (Ag)

is equivalent to (—1)"1(—1)"2=(—1) ?i(—~1) " where p,, p, respectively are the parity of
permutation (21a) and (21b) with a, a’ replacing g, g', and p}, p} are obtained from
P1, P2 by exchanging a and a’; but this is true since, if this equality is rewritten as

(—D)P(=1)P2=(=1)"(-1)" (A.10)

one easily sees that it is in turn equivalent to the equality of the parity of the following
permutation:

(1,2,...,20)>((1,2,...,2n\[a],(1,2,...,2n\[2'],[a] n[a']) (A.11)

to the parity of the permutation obtained by exchanging [a] and [a']. This last equality
obviously holds since both (1,2,...,2n)\[a] and (1, 2,...,2n)\[a’] are even multi-
indices. Also in this case a strictly analogous proof can be given for the antisymmetry
relations

{#apa3> ©a061} = —{Pa1b15 Yara)} (A.12)
{@a61 Pats1t = —{@a 1630 ool (A.13)

where the only variant is met in verifying (A.13), which, since super-Poisson brackets
are symmetric in fermion fields, i.e.

{0, o} ={0p, @} (A.14)
amounts to
(—1)P{—1)Pi= =(=1)"i(—1) "2 (A.15)

finally, equation (A.15) holds due to the oddness of multi-indices (1,2, ..., 2n)\[b]
and (1,2,...,2n)\[b'], which appear in the analogue of permutation (A.11).

As to the Jacobi identity, let f, g, h, be three arbitrary, either boson or fermion,
supervariables, and, if [g], [g'] are Grassmann multi-indices with indices ranging in
{1,2,...,2n}, as in equation (20b), introduce the following notation:

o([g).[gD=p,+p; (A.16)

with p;, p, defined according to equations {205), (21a) and (21b). Then equation
(20b) implies

{fie1: {80015 Bl + Loy, (S, 8ont + {81500 B, Sl
= [(~1)7CMAD o TN £ £o B}
+ (1) 7LD+ Tale IO (£ g1}
+ (~1) Mooy LmIale D o th £y (A17)
if
[elulyl=[ylulnl=[nlule]l=(1,2,...,2n). (A18)
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(If equation (A.18) is not fulfilled, the corresponding Jacobi identity is trivial since
the three terms involved vanish separately.) According to equation (A.16) the exponent
in the first term of the rRHs of equation (A.17) is given by the sum of the parities of
the following permutations:

(1,2,....2m)=>((1,2,...,2s0\[¥]. [*]D {A.19qa)
(21> ({07 (2]l lyD (A.198)
(1,2,...,2n)>((1,2,...,2n\[¢], [¢]) (A.19¢}
DY Inln]={IvIn[nNe), lelnlyInin]) (A.19d)
while the sum of the parities of the permutations
(1,2,...,2n)>((1,2, ..., 2n\[e]. [¢]) {(A.20a)
[v]I=(yNel [ylnleD (A.20b)
(1,2,....20)>((1,2,...,2n)\[n],{n]) (A.20c)
[e]lnlyl={(elnlyD\[n] [eInlyIn(aD (A.20d)

gives the exponent in the second term. Now equality of these two exponents is obviously
equivalent to the equality of the parity of the two following permutations:

(1,2,....20)>((1,2,..., 20 N\[v], [y Nle ] (LylnleDNn], [eIn[yIn (=D
=((1,2,...,2n\[v]. (1,2,...,2n)\[¢], (1, 2,...,20)\[n],
[elnlvinlal (A.21a)
(1,2,....2m)>((1,2,...,2eN\[n], [nNLy], (In)n[yINle L. le]nlyIn(n))
=((1,2,...,2n\[n], (1,2,...,2n\[v], (1, 2,...., 2n)\[¢],
lelnlylninl) (A.21b)
where equation (A.18) was used, which in turn is equivalent to
#{[D[#{(eD+#([+vD]=0 (mod 2) (A.22)

where the symbol # is used to denote the number of elements of multi-indices. Equality
of exponents in the two other possible couples of terms in the rRHsS of equation (A.17)
obviously leads to two relations obtained from equation (A.22) just by cyclic permuta-
tions of Grassmann multi-indices. By using these two relations together with equations
(A.22) and (A.17), the generic Jacobi identity is obviously seen to be equivalent to the
following:

[(_1)#([«»])#([111){‘{‘ {g, h}}+(—l)*(["])#([ﬂ){h, {f. g}}
+(_1)*([7])*([¢]){g’ {h,f}}][tp]h[y]ﬁ[n] =0 (A-23)

which is a consequence of graded Jacobi identity in equation (7a), since, if ¢, is a
generic coefficient in the expansion of the supervariable ¢ as a power series in
Grassmann generators, then obviously

a(w)=#{gl) (mod 2). (A.24)
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